Printer-friendly versionSend by emailPDF version

Consolidation and translation regulation.

TitleConsolidation and translation regulation.
Publication TypeJournal Article
Year of Publication2012
AuthorsGal-Ben-Ari, S, Kenney, JW, Ounalla-Saad, H, Taha, E, David, O, Levitan, D, Gildish, I, Panja, D, Pai, B, Wibrand, K, Simpson, TIan, Proud, CG, Bramham, CR, Armstrong, JDouglas, Rosenblum, K
JournalLearn Mem
Volume19
Issue9
Pagination410-22
Date Published2012 Sep
ISSN1549-5485
KeywordsAnimals, Cerebral Cortex, Gene Expression Regulation, Hippocampus, Humans, Memory, MicroRNAs, Models, Molecular, Nervous System Diseases, Neurons, Neurotransmitter Agents, Protein Biosynthesis, Taste
Abstract

mRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time. In the normal brain, control of translation is a key mechanism for regulation of memory and synaptic plasticity consolidation, i.e., the off-line processing of acquired information. These regulation processes may differ between different brain structures or neuronal populations. Moreover, dysregulation of translation leads to pathological brain function such as memory impairment. Both normal and abnormal function of the translation machinery is believed to lead to translational up-regulation or down-regulation of a subset of mRNAs. However, the identification of these newly synthesized proteins and determination of the rates of protein synthesis or degradation taking place in different neuronal types and compartments at different time points in the brain demand new proteomic methods and system biology approaches. Here, we discuss in detail the relationship between translation regulation and memory or synaptic plasticity consolidation while focusing on a model of cortical-dependent taste learning task and hippocampal-dependent plasticity. In addition, we describe a novel systems biology perspective to better describe consolidation.

DOI10.1101/lm.026849.112
Alternate JournalLearn. Mem.
PubMed ID22904372
PubMed Central IDPMC3418764

Add new comment

Filtered HTML

  • Web page addresses and e-mail addresses turn into links automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
CAPTCHA
This question is for testing whether you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.