Printer-friendly versionSend by emailPDF version

Drosophila poly suggests a novel role for the Elongator complex in insulin receptor–target of rapamycin signalling

TitleDrosophila poly suggests a novel role for the Elongator complex in insulin receptor–target of rapamycin signalling
Publication TypeJournal Article
Year of Publication2012
AuthorsBolukbasi, E, Vass, S, Cobbe, N, Nelson, B, Simossis, V, Dunbar, DR, Heck, MMS
JournalOpen Biology
Volume2
Start Page110031
Date Published01/2012
Abstract

Multi-cellular organisms need to successfully link cell growth and metabolism to environmental cues during development. Insulin receptor–target of rapamycin (InR–TOR) signalling is a highly conserved pathway that mediates this link. Herein, we describe poly, an essential gene in Drosophila that mediates InR–TOR signalling. Loss of poly results in lethality at the third instar larval stage, but only after a stage of extreme larval longevity. Analysis in Drosophila demonstrates that Poly and InR interact and that poly mutants show an overall decrease in InR–TOR signalling, as evidenced by decreased phosphorylation of Akt, S6K and 4E-BP. Metabolism is altered in poly mutants, as revealed by microarray expression analysis and a decreased triglyceride : protein ratio in mutant animals. Intriguingly, the cellular distribution of Poly is dependent on insulin stimulation in both Drosophila and human cells, moving to the nucleus with insulin treatment, consistent with a role in InR–TOR signalling. Together, these data reveal that Poly is a novel, conserved (from flies to humans) mediator of InR signalling that promotes an increase in cell growth and metabolism. Furthermore, homology to small subunits of Elongator demonstrates a novel, unexpected role for this complex in insulin signalling.

URLhttp://rsob.royalsocietypublishing.org/content/2/1/110031.abstract
DOI10.1098/rsob.110031

Add new comment

Filtered HTML

  • Web page addresses and e-mail addresses turn into links automatically.
  • Allowed HTML tags: <a> <em> <strong> <cite> <blockquote> <code> <ul> <ol> <li> <dl> <dt> <dd>
  • Lines and paragraphs break automatically.

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
CAPTCHA
This question is for testing whether you are a human visitor and to prevent automated spam submissions.
Image CAPTCHA
Enter the characters shown in the image.