Printer-friendly versionSend by emailPDF version

The frequent evolutionary birth and death of functional promoters in mouse and human.

TitleThe frequent evolutionary birth and death of functional promoters in mouse and human.
Publication TypeJournal Article
Year of Publication2015
AuthorsYoung, RS, Hayashizaki, Y, Andersson, R, Sandelin, A, Kawaji, H, Itoh, M, Lassmann, T, Carninci, P, Bickmore, WA, Forrest, AR, Taylor, MS
Corporate AuthorsFANTOM Consortium,
JournalGenome Res
Date Published2015 Jul 30
ISSN1549-5469
Abstract

Promoters are central to the regulation of gene expression. Changes in gene regulation are thought to underlie much of the adaptive diversification between species and phenotypic variation within populations. In contrast to earlier work emphasizing the importance of enhancer evolution and subtle sequence changes at promoters, we show that dramatic changes such as the complete gain and loss (collectively turnover) of functional promoters are common. Using quantitative measures of transcription initiation in both humans and mice across 52 matched tissues we discriminate promoter sequence gains from losses and resolve the lineage of changes. We also identify expression divergence and functional turnover between orthologous promoters, finding only the latter is associated with local sequence changes. Promoter turnover has occurred at the majority (>56%) of protein-coding genes since humans and mice diverged. Tissue-restricted promoters are the most evolutionarily volatile where retrotransposition is an important, but not the sole source of innovation. There is considerable heterogeneity of turnover rates between promoters in different tissues, but the consistency of these in both lineages suggests the same biological systems are similarly inclined to transcriptional rewiring. The genes affected by promoter turnover show evidence of adaptive evolution. In mice, promoters are primarily lost through deletion of the promoter containing sequence; whereas in humans, many promoters appear to be gradually decaying with weak transcriptional output and relaxed selective constraint. Our results suggest that promoter gain and loss is an important process in the evolutionary rewiring of gene regulation and may be a significant source of phenotypic diversification.

DOI10.1101/gr.190546.115
Alternate JournalGenome Res.
PubMed ID26228054